Volume 2, Issue 1, September 2016, Page: 1-7
Axisymmetric Stagnation Flow of a Micropolar Fluid in a Moving Cylinder: An Analytical Solution
Abdul Rehman, Department of Mathematics, University of Balochistan, Quetta, Pakistan
Saleem Iqbal, Department of Mathematics, University of Balochistan, Quetta, Pakistan
Syed Mohsin Raza, Department of Physics, University of Balochistan, Quetta, Pakistan
Received: Jul. 12, 2016;       Accepted: Jul. 22, 2016;       Published: Aug. 26, 2016
DOI: 10.11648/j.fm.20160201.11      View  2868      Downloads  123
Abstract
In this paper, we have presented the axisymmetric stagnation flow of a micropolar fluid in a moving cylinder. The governing equations of motion, microrotation and energy are simplified with the help of suitable similarity transformations. System of six nonlinear coupled differential equations has been solved analytically with the help of strong analytical tool known as homotopy analysis method. The physical features of various parameters have been discussed through graphs.
Keywords
Series Solution, Axisymmetric Stagnation Flow, Micropolar Fluid, Moving Cylinder
To cite this article
Abdul Rehman, Saleem Iqbal, Syed Mohsin Raza, Axisymmetric Stagnation Flow of a Micropolar Fluid in a Moving Cylinder: An Analytical Solution, Fluid Mechanics. Vol. 2, No. 1, 2016, pp. 1-7. doi: 10.11648/j.fm.20160201.11
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
F. Labropulu and D. Lia, Stagnation-Point Flow of a Second-grade Fluid with Slip, Int J Non-Linear Mec, 43 (2008) 941-947.
[2]
V. Kumaran, R. Tamizharasi and K. Vajravelu, Approximate Analytic Solutions of Stagnation Point Flow in a Porous Medium, Comm Nonlinear Sci Num Simu, 14 (2009) 2677-2688.
[3]
C. Y. Wang, Axisymmetric Stagnation Flow on a Cylinder, Quart. Appl. Math, 32 (1974) 207-213.
[4]
C. Y. Wang, Off-centered Stagnation Flow Towards a Rotating Disc, Int. J. Engag. Sci. 46 (2008) 391-396.
[5]
C. Y. Wang, Stagnation Slip Flow and Heat Transfer on a Moving Plate, Che. Eng. Sci, 61 (2006) 7668-7672.
[6]
F. Labropulu, D. Li and I. Pop, Non-orthogonal Stagnation-point Flow Towards a Stretching Surface in a non-Newtonian Fluid with Heat Transfer, Int. J. Ther. Sci, 49 (2010) 1042-1050.
[7]
K. Hiemenz, Die Grenzschicht an Einem in den Gleichformingen Flussigkeitsstrom Eingetauchten graden Kreiszylinder, Dinglers Polytech. J. 326 (1911) 321-324.
[8]
F. Homann, Der Einfluss grosser Zahighkeit bei der Stromung um den Zylinder und um die Kugel. Zeitschrift fur angewandte Mathematik und Mechanik 16 (1936) 153-164.
[9]
L. Hong and C. Y. Wang, Annular Axisymmetric Stagnation Flow on a Moving Cylinder, Int. J. Engag. Sci. 47 (2009) 141-152.
[10]
S. Heller, W. Shapiro and O. Decker, A Porous Hydrostatic gas Bearing for use in Miniature Turbomachinery, ASLE Trans. 22 (1971) 144-155.
[11]
B. C. Majumdar, Analysis of Externally Pressurized Porous gas Bearings-1, Wear 33 (1975) 25-35.
[12]
S. Nadeem, Abdul Rehman, K. Vajravelu, Jinho Lee, Changhoon Lee, Axisymmetric stagnation flow of a micropolar nanofluid in a moving cylinder, Mathematical Problems in Engineering, Volume 2012, Article ID 378259.
[13]
S. Nadeem, Abdul Rehman, Axisymmetric stagnation flow of a nanofluid in a moving cylinder, Comp. Math. Mod. 24 (2) (2013) 293-306.
[14]
Abdul Rehman, S. Nadeem, M. Y. Malik, Stagnation flow of couple stress nanofluid over an exponentially stretching sheet through a porous medium, J. Power Tech. 93 (2) (2013) 122-132.
[15]
Abdul Rehman, S. Nadeem, Heat transfer analysis of the boundary layer flow over a vertical exponentially stretching cylinder, Global J. Sci. Fron. Res. 13 (11) (2013) 73-85.
[16]
M. Y. Malik, M. Naseer, S. Nadeem, Abdul Rehman, The boundary layer flow of Casson nanofluid over a vertical exponentially stretching cylinder, Appl. NanoSci. DOI: 10.1007/s13204-012-0267-0.
[17]
Abdul Rehmana, S. Achakzai, S. Nadeem, S. Iqbal, Stagnation point flow of Eyring Powell fluid in a vertical cylinder with heat transfer, Journal of Power Technologies 96 (1) (2016) 57–62
[18]
Abdul Rehman, S. Nadeem, S. Iqbal, M. Y. Malik, M. Naseer, Nanoparticle effect over the boundary layer flow over an exponentially stretching cylinder, J. NanoEngineering and NanoSystems (2014) 1-6.
[19]
Abdul Rehman, G. Farooq, I. Ahmed, M. Naseer, M. Zulfiqar, Boundary Layer Stagnation-Point Flow of Second Grade Fluid over an Exponentially Stretching Sheet, American J App Math Stat, 3 (6) (2015) 211-219.
[20]
M. Y. Malik, M. Naseer, S. Nadeem, Abdul Rehman, The boundary layer flow of huperbolic tangent fluid over a vertical exponentially stretching cylinder, Alexandria Eng. J., 53 (2014) 747-750.
[21]
M. Y. Malik, M. Naseer, Abdul Rehman, Numerical study of convective heat transfer on the Power Law fluid over a vertical exponentially stretching cylinder, App Comp Math, 4 (5), (2015) 346-350.
[22]
A. C. Eringen, Theory of Micropolar Fluids, J. Math. Mech. 16 (1966) 1-18.
[23]
Chun-I Chen, Non-linear Stability Characterization of the Thin Micropolar Liquid Film Flowing Down the Inner Surface of a Rotating Vertical Cylinder, Commun Nonlinear Sci Numer Simulat. 12 (2007) 760-775.
[24]
S. Nadeem, Noreen Sher Akbar and M. Y. Malik, Exact and Numerical Solutions of a Micropolar Fluid in a Vertical Annulus, Wiley InterScience, DOI 10.1002/num.20517.
[25]
R. Nazar and N. Amin, Free Convection Boundary Layer on an Isothermal Sphere in a Micropolar Fluid, Int Comm Heat Mass Tran, 29 (2002) 377-386.
[26]
R. Nazar, N. Amin, T. Gro and I. Pop, Free Convection Boundary Layer on a Sphere with Constant Surface Heat Flux in a Micropolar Fluid, Int Comm Heat Mass Tran, 29 (2002) 1129-1138.
[27]
S. Nadeem, Abdul Rehman, Mohamed Ali, The boundary layer flow and heat transfer of a nanofluid over a vertical slender cylinder, J. NanoEngineering and NanoSystems (2012) 1-9.
[28]
S. Abbasbandy, Soliton Solutions for the Fitzhugh-Nagumo Equation with the Homotopy Analysis Method, Appl. Math Mod 32 (2008) 2706-2714.
[29]
Abdul Rehman, S. Nadeem, M. Y. Malik, Boundary layer stagnation-point flow of a third grade fluid over an exponentially stretching sheet, Braz. J. Che. Eng. 30 (3) (2013) 611-618.
[30]
Sj. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman & Hall/CRC Press, Boca Raton (2003).
[31]
S. Nadeem, Anwar Hussain and Majid Khan, HAM Solutions for Boundary Layer Flow in the Region of the Stagnation Point Towards a Stretching Sheet, Commun Nonlinear Sci Numer Simulat. 15 (2010) 475-481.
[32]
S. Nadeem, Abdul Rehman, Changhoon Lee, Jinho Lee, Boundary layer flow of second grade fluid in a cylinder with heat transfer, Mathematical Problems in Engineering, Volume 2012, Article ID 640289.
[33]
Sj. Liao, On the Homotopy Analysis Method for nonlinear Problems, Appl Math Comput 147/2 (2004) 499-513.
[34]
Abdul Rehman, S. Nadeem, Mixed convection heat transfer in micropolar nanofluid over a vertical slender cylinder, Chin. Phy. Lett. 29 (12) (2012) 124701-5.
[35]
Abdul Rehman, R. Bazai, S. Achakzai, S. Iqbal, M. Naseer, Boundary Layer Flow and Heat Transfer of Micropolar Fluid over a Vertical Exponentially Stretched Cylinder, App Comp Math, 4 (6) (2015) 424-430.
[36]
O. D. Makinde, Thermal decomposition of unsteady non-Newtonian MHD Couette flow with variableProperties,. Int. J. NumericalMethods for Heat & Fluid Flow, 25 (2) (2015) 252-264.
[37]
O. D. Makinde, Thermal analysis of a reactive generalized Couette flow of power law fluids between concentric cylindrical pipes, European Physical Journal Plus, 129 (270) (2014) 1-9.
[38]
G. Singh, O. D. Makinde, Axisymmetric slip flow on a vertical cylinder with heat transfer. Sains Malaysiana 43 (3) (2014) 483–489.
[39]
M. S. Tshehla, O. D. Makinde: Analysis of entropy generation in a variable viscosity fluid flow between two concentric pipes with a convective cooling at the surface. Int. J. Phy. Sci. 6 (25) (2011) 6053-6060.
[40]
O. D. Makinde: Analysis of Non-Newtonian reactive flow in a cylindrical pipe. ASME - Journal of Applied Mechanics 76 (2009) 1-5.
Browse journals by subject