Volume 5, Issue 2, December 2019, Page: 39-71
Quinn’s Law of Fluid Dynamics Pressure-driven Fluid Flow Through Closed Conduits
Hubert Michael Quinn, Department of Research and Development, the Wrangler Group LLC, Brighton, USA
Received: Oct. 12, 2019;       Accepted: Dec. 11, 2019;       Published: Jan. 6, 2020
DOI: 10.11648/j.fm.20190502.12      View  471      Downloads  119
Abstract
In this paper we develop from first principles a unique law pertaining to the flow of fluids through closed conduits. This law, which we call “Quinn’s Law”, may be described as follows: When fluids are forced to flow through closed conduits under the driving force of a pressure gradient, there is a linear relationship between the fluid-drag normalized dimensionless pressure gradient, PQ, and the normalized dimensionless fluid current, CQ. The relationship is expressed mathematically as: PQ=k1 +k2CQ. This linear relationship remains the same whether the conduit is filled with or devoid of solid obstacles. The law differentiates, however, between a packed and an empty conduit by virtue of the tortuosity of the fluid path, which is seamlessly accommodated within the normalization framework of the law itself. When movement of the fluid is very close to being at rest, i.e., very slow, this relationship has the unique minimum constant value of k1, and as the fluid acceleration increases, it varies with a slope of k2 as a function of normalized fluid current. Quinn’s Law is validated herein by applying it to the data from published classical studies of measured permeability in both packed and empty conduits, as well as to the data generated by home grown experiments performed in the author’s own laboratory.
Keywords
Closed Conduits, Conduit Permeability, Friction Factor, Wall Effect, Boundary Layer, Turbulent, Flow Profile, Chaos
To cite this article
Hubert Michael Quinn, Quinn’s Law of Fluid Dynamics Pressure-driven Fluid Flow Through Closed Conduits, Fluid Mechanics. Vol. 5, No. 2, 2019, pp. 39-71. doi: 10.11648/j.fm.20190502.12
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
H. Darcy, Les Fontaines Publiques de la Ville de Dijon, Victor Dalmont, Paris, France, 1856.
[2]
E. Erdim, O. Akgiray, I. Demir; A revisit of pressure drop-flow rate correlations for packed beds of spheres, Powder Technology 283 (2015) 488-504.
[3]
N. Dukhan, O. Bagci, M. Ozdemir. Experimental flow in various porous media and reconciliation of Forchheimer and Ergun relations. Experimental Thermal and Fluid Science 57 (2014) 425-433.
[4]
CHARLES L. FEFFERMAN, EXISTENCE AND SMOOTHNESS OF THE NAVIER–STOKES EQUATION http://www.claymath.org/sites/default/files/navierstokes.pdf.
[5]
H. M. Quinn, J. J. Takarewski, E. Williams, US 7,767,463, Method for screening mobile phases in chromatography systems (2010).
[6]
H. M. Quinn, J. E. Brann, III, US 6,149,816, Chemical analyses (2000).
[7]
H. M. Quinn, John E. Brann, III, US 6,110,362, Chemical analyses (2000).
[8]
H. M. Quinn, R. A. Menapace, C J. Oberhauser, US 5,968,367, High performance liquid chromatography method and apparatus (1999).
[9]
H. M. Quinn, J. J Takarewski, US 5,919,368, High performance liquid chromatography method and apparatus (1999).
[10]
H. M. Quinn, R. A. Menapace, C J. Oberhauser US 5,795,469, High performance liquid chromatography method and apparatus (1998).
[11]
H. M. Quinn, J. J. Takarewski, US 5,772,874, High performance liquid chromatography method and apparatus (1998).
[12]
H. M. Quinn, US 20100071444, Throughput Screening, Purification and Recovery System for Large and Small Molecules (2010).
[13]
G. Guiochon, S. G. Shirazi, and A. M. Katti, Fundamentals of Preparative and Nonlinear Chromatography, Academic Press, Boston, Mass, USA, 1994.
[14]
R. Endele, I. Halasz, and K. Unger, J. Chromatography, 99, 377 (1974).
[15]
D. Cabooter, J. Billen, H. Terryn, F. Lynen, P. Sandra, G. Desmet; Journal of Chromatography A, 1178 (2008) 108–117.
[16]
F. Gritti, D. S. Bell, G. Guiochon; Journal of Chromatography A, 1355 (2014) 179–192.
[17]
Kim Vanderlindena, Gert Desmeta, David S. Bellb, Ken Broeckhoven, Detailed efficiency analysis of columns with a different packing quality and confirmation via total pore blocking, Journal of Chromatography A, 1581–1582 (2018) 55–62.
[18]
U. Neue, HPLC Columns-Theory, Technology and Practice, Wiley-VCH, 1997.
[19]
A. E. Reising, J. M. Godinho, K. Hormann, J. W. Jorgenson, U. Tallarek. Larger voids in mechanically stable, loose packings of 1.3 mm frictional, cohesive particles: Their reconstruction, statistical analysis, and impact on separation efficiency: Journal of Chromatography A, 1436 (2016) 118-132.
[20]
P. C. Carman, “Fluid flow through granular beds,” Transactions of the Institution of Chemical Engineers, vol. 15, pp. 155–166, 1937.
[21]
R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, John Wiley & Sons, 2002.
[22]
Dejan Brki´c and Pavel Praks, Unified Friction Formulation from Laminar to Fully Rough Turbulent Flow; Appl. Sci. 2018, 8, 2036; doi: 10.3390/app8112036.
[23]
M. Rhodes, Introduction to Particle Technology, John Wiley & Sons, 1998.
[24]
L. Prandtl, in Verhandlungen des dritten internationalen Mathematiker-Kongresses in Heidelberg 1904, A. Krazer, ed., Teubner, Leipzig, Germany (1905), p. 484. English trans. in Early Developments of Modern Aerodynamics, J. A. K. Ackroyd, B. P. Axcell, A. I. Ruban, eds., Butterworth-Heinemann, Oxford, UK (2001), p. 77.
[25]
K. E. Bullen, An Introduction to the Theory of Mechanics, 7th edition, Cambridge AT THE UNIVERSITY PRESS 1965.
[26]
J. C. Giddings, Dynamics of Chromatography, Part I: Principles and Theory, Marcel Dekker, New York, NY, USA, 1965.
[27]
J. C. Giddings, Unified Separation Science, John Wiley & Sons, 1991.
[28]
K. B. SOUTHERLAND, R. D. FREDERIKSEN, W. J. A. DAHM; Comparisons of Mixing in Chaotic and Turbulent Flows; Chaos, Solitons & Fractals Vol. 4, No. 6, pp. 1057-1089, 199.
[29]
T. Farkas, G. Zhong, G. Guiochon, Validity of Darcy’s Law at Low Flow Rates in Liquid Chromatography Journal of Chromatography A, 849, (1999) 35-43.
[30]
H. M. Quinn; A Reconciliation of Packed Column Permeability Data: Column Permeability as a Function of Particle Porosity Journal of Materials Volume 2014 (2014), Article ID 636507, 22 pages http://dx.doi.org/10.1155/2014/636507.
[31]
J. M. Coulson; University of London, Ph. D. thesis, “The Streamline Flow of Liquids through beds comprised of Spherical particles” 1935.
[32]
Ergun, S. and Orning, A. A., Fluid Flow through Randomly Packed Columns and Fluidized Beds, Ind. Eng. Chem. vol. 41, pp. 1179, 1949.
[33]
Ergun, S., Determination of Particle Density of Crushed Porous Solids, Anal. Chem. vol. 23, 1951.
[34]
Ergun, S., Fluid Flow Through Packed Columns, Chem. Eng. Progr. vol. 48, pp. 89-94, 1952.
[35]
H. M. Quinn, A Reconciliation of Packed Column Permeability Data: Deconvoluting the Ergun Papers Journal of Materials Volume 2014 (2014), Article ID 548482, 24 pages http://dx.doi.org/10.1155/2014/548482.
[36]
H. M. Quinn, Reconciliation of packed column permeability data—part 1: the teaching of Giddings revisited, Special Topics & Reviews in Porous Media, vol. 1, no. 1, pp. 79–86, 2010.
[37]
B. J. Mckeon, C. J. Swanson, M. V. Zagarola, R. J. Donnelly and A. J. Smits. Friction factors for smooth pipe flow; J. Fluid Mech. (2004), vol. 511, pp. 41-44. Cambridge University Press; DO1; 10.1017/S0022112004009796.
[38]
B. J. Mckeon, M. V. Zagarola, and A. J. Smits. A new friction factor relationship for fully developed pipe flow; J. Fluid Mech. (2005), vol. 238, pp. 429-443. Cambridge University Press; DO1; 10.1017/S0022112005005501.
[39]
C. J. Swanson, B. Julian, G. G. Ihas, and R. J. Donnelly. Pipe flow measurements over a wide range of Reynolds numbers using liquid helium and various gases. J. Fluid mech. (2002), vol. 461, pp. 1-60. Cambridge University Press; DO1; 0.1017/S0022112002008595.
[40]
J. Nikuradze, NASA TT F-10, 359, Laws of Turbulent Flow in Smooth Pipes. Translated from “Gesetzmassigkeiten der turbulenten Stromung in glatten Rohren” VDI (Verein Deutsher Ingenieure)-Forschungsheft 356.
[41]
H. M. Quinn, Unpublished data.
[42]
j. Nikuradze, NACA TM 1292, Laws of Flow in Rough Pipes, July/August 1933. Translation of “Stromungsgesetze in rauhen Rohren.” VDI-Forschungsheft 361. Beilage zu “Forschung auf dem Gebiete des Ingenieurwesens” Ausgabe B Band 4, July/August 1933.
[43]
M. DOBRNJAC, DETERMINATION OF FRICTION COEFFICIENT IN TRANSITION FLOW REGION FOR WATERWORKS AND PIPELINES CALCULATION, MECHANICAL ENGINEERING FACULTY, UNIVERSITY IN BANJALUKA, BANJALUKA, REPUBLIC SRPSKA, BOSNIA & HERZEGOVINA.
[44]
A. Ramakrishna Rao, B. Kumar, Friction Factor for Turbulent Pipe Flow, Department of Civil Engineering, IISc, Bangalore-560012, India.
[45]
B. H. Yang, D. D. Joseph, Virtual Nikuradse, Journal of Turbulence Vol. 10, No. 11, 2009, 1–28.
[46]
J. L. M. Poiseuille, Memoires des Savants Etrangers, Vol. IX pp. 435-544, (1846); BRILLOUIN, M. (1930) Jean Leonard Marie Poiseuille. Journal of Rheology, 1, 345.
[47]
H. Blasius (1908). "Grenzschichten in Flüssigkeiten mit kleiner Reibung". Z. Angew. Math. Phys. 56: 1–37.
Browse journals by subject